CALMET TS23

Three Phase Reference Standard – Accurate Power and Energy Measurement

Calmet TS23

- Measures power and energy in 0.02 or 0.04 accuracy class
- Voltage range: 0.05...600V and 0.1...40kV
- Current range direct input: 1mA...120A and with current clamps: 120A, 1200A, 30/300/3000A
- Display of vector diagram, phase sequence, waveform oscilloscope, harmonics spectrum bar and trend charts for analysis of the mains conditions
- Testing of Electricity Meters and CT/PT Transformers
- The measurement system may be used either as a standalone reference standard meter class 0.02, 0.04 in laboratory or test bench station or as portable working standard for measurements on site
- Data readout and test system control via USB, Ethernet and Bluetooth and Calmet TS PC soft
- Modern SD flash memory card up to 32GB for storage of customer data and measurement results
- Large 7" color Touchscreen
- Two pulse inputs for simultaneously testing of 2 meters or testing in two quadrants

Calmet TS23 is three phase reference standard of accuracy 0.02% (or 0.04%). It can be used in laboratory or on site for electricity meter testing. Due to pulse input / output TS23 can be used as reference standard meter for Test Bench Stations. It can measure voltage, current, power and energy up to 3x120A and 3x600V AC.

Calmet TS23 Reference Standard Meter applications are:

- testing of electricity meters according to the EN 50470, IEC 62052 and IEC 62053 standards directly on site or laboratory including measure of meter error, register error, start up current, no load test and maximum power meter error,
 - verification of power network wiring with measurement of power network parameters with vector diagram display,

testing of Current Transformers (CT) and Potential Transformers (PT) according to EN 60044 directly on site including measure of CT/PT ratio error and phase error as well as CT/PT burden measurement simultaneously in three phases,

measuring of power quality parameters,

acting as Reference Standard Meter in 3-phase Meter Test Bench Station.

The TS23 as a reference standard - power network and power quality meter

Examples of applications

TS23 measurement possibilities

Color Touchscreen for easy operation enables:

TS23 as a stand-alone reference meter for Current

Μ

٨

<u>*</u>**

4 5

Υ

TS23 as a reference standard

for working standard testing

Transformer testing

L3.

- measurement of power network parameters: voltages U1, U2, U3, U12, U23, U13, UN, currents I1, I2, I3, IN, frequency f, phase angles $\varphi 1$, $\varphi 2$, $\varphi 3$, power factors PF1, PF2, PF3, ΣPF , factors $\sin \varphi 1$, $\sin \varphi 2$, $\sin \varphi 3$, $\Sigma \sin \varphi$, $tg \varphi 1$, $tg \varphi 2$, $tg \varphi 3$, $\Sigma tg \varphi$, angles between voltages $\angle U12$, $\angle U13$, powers P1, P2, P3, ΣP , Q1, Q2, Q3, ΣQ , S1, S2, S3, ΣS ,
- visualization of measurement results in form of: table, vectors,

trend chart, oscilloscope (waveform) or bar chart (harmonics of U, I, P, Q),

- storage results in built, removable SD memory card, in memory 8GB – 32GB can be saved over 10000 complete results with administrative data,
- readout of stored results,
- making SCREENSHOT and save it in memory or print on portable wireless printer,
- · printout of results on portable wireless printer,
- transferring data to the personal computer via USB, Bluetooth or Ethernet interface.

TS23 technical specification

Parameter		Range		Αςςι	iracy	1)2)3)4)	
		0.05.0001		class 0.02	2	class 0.04	
Voltage (Direct)		0.05600V		±0.02% -	,, 0 10/	±0.04% ³	
Vollage (VollLilewire 40kV)		0.01 1204		10.0204	0.1%		
Current (Direct)		0.01120A		±0.02% +0.02%*		±0.04% +0.04%*	
		0.1 124		10.02 /0	+0.2	<u>+0.0+70</u>	
Current (Clamps CT10AC)		0.0030.1A			+0.29	%*	
		0.1120A			±0.2	%	
Current (Clamps CI 100AC)		0.01 <u>0.1A</u>			±0.20	%*	
Current (Clampa CT1000AC)		101200A			±0.2	%	
		0.3 <u>10A</u>			±0.20	%*	
Current (Flexible Clamps FCT3000AC)	0.	3 <u>30A/3300A/303000A</u>	4	<u>+</u>	0.1%	±Em	
Current (AmpLiteWire 2000A)		1 <u>2000A</u>		<u>+</u>	0.1%	±Em	
Power and energy (Direct)		0.01120A / 10600V		±0.02%		±0.04%	
		0.001 <u>0.01A</u> / 10600V		±0.02%*		±0.04%*	
Power and energy (Clamps CT10AC)		0.112A / 10600V			±0.2	%	
		0.01 <u>0.1A</u> / 10600V			±0.24	%*	
Power and energy (Clamps CT100AC)		0.1120A / 10600V		±0.2%		% V *	
		<u>0.010.1A</u> / 10600V			±0.2	%° [≁]	
Power and energy (Clamps CT1000AC)		1 10A / 10 600V			±0.2	~0 %*	
Power and energy (Elexible Clamps ECT3000AC B)	0330	$\frac{1.0.10A}{10.000V}$	600V	+	-0.1%	+Fm	
Power and energy	0.5 <u>50</u>	<u>y 5<u>5000</u> y 50<u>50000</u> y 10</u>			-0.1%	+Fm	
(Volt) iteWire $40kV + Ampl iteWire 2000A$)		1 <u>2000A</u> / 0.5 <u>40kV</u>		<u> </u>	-0.1 /0		
Frequency		4070Hz			±0.00	3Hz	
Phase shift (Direct)		-180+180°		±0.01° ⁵⁾⁶	±0.01° ⁵⁾⁶⁾ ±0.02° ⁵⁾⁶⁾		
Phase shift (Clamps)		-180+180°		1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Power factor $\cos \phi$ and $\sin \phi$		0±1		±C	±0.001 ⁵⁾⁶⁾⁷⁾		
Temperature coefficient (Direct)		0.001% per 1	°C in ra	inge -10+50°	C		
Time stability (for Energy Direct)		Short term $[1h] = 0.0$	1%, lon	g term [1 year]] = 0.	03%	
Power short term [1h] stability (Direct)				±0.005% ±0.01		±0.010%	
Power long term [1 year] stability (Direct)				±0.010%		±0.025%	
Power temperature coefficient per 1°C (Direc	t)			±0.001%		±0.002%	
$^{1)}$ % - related to the measuring value, %* - related	ed to the	measuring range final valu	e (is un	derlined)			
²⁾ absolute extended uncertainty under confidence	e level of	95% covers reference un	certaint	y of standards,	stabi	lity in 12 months,	
influence quantities (ambient temperature +20	+26°C,	humidity and power supply	/ voltage	e 85265V, fre	equence	cy 4763Hz)	
³⁾ Em – sensor basic error, Em=1%+0.1%	o* (Flexii	DIE Clamps FC13000AC)	, Em=	2%+0.2%* (VOITLI	tewire 40kV and	
 Amplitewire 2000A) ⁴⁾ power and energy errors related to apparent pr 	wor						
⁵⁾ in voltage range 10600V (Direct)	50001						
⁶⁾ in current range 0.01120A (Direct)							
⁷⁾ in current range: 0.1A12A (Clamps CT10AC),	0.1A120	DA (Clamps CT100AC), 104	A1200/	A (Clamps CT1	000AC	2)	
Specifications for the power quality parameter	ers						
Parameter		Range	1		Α	ccuracy ¹⁾	
Harmonics in voltages, amplitude		0100% of input	15	t 63rd		±0.1% ²⁾	
currents, P and Q powers phase		-180+180°	1	05		±0.5° ³⁾	
Total harmonic distortion THD in voltages and cu	rrents	0100% of input	1 ^s	^{.t} 63 rd		±0.1% ²⁾	
Total interharmonic distortion TID in voltages and o	currents	015% of input	40	.3200Hz		±0.2% ⁴⁾	
Signal voltage ⁵⁾		015% of input	40	.3200Hz		±5%	
Voltage asymmetry		0100%				±2%	
¹⁾ absolute extended uncertainty under confidence level of 95% covers reference uncertainty of standards, stability in 12 months,							
influence quantities (ambient temperature +20+26°C, humidity and power supply voltage 85265V, frequency 4763Hz)							
27 or input for $80-140$ Hz frequency range of harmonics with linear rise to 0.4% of input for 3200Hz							
³⁾ for 80-140Hz frequency range of harmonics wit	n linear ri	ise to 8° for 3200Hz		22001			
5) the highest non-harmonic amplitude and frequency	iarmonics	with linear rise to 5% of li	iput for	3200HZ			
	ысу						
The TS23 as a tester of electricity meter	ers and	instrument transfor	mers				

Testing of electricity meters (DUT – **D**evice **U**nder **T**est) directly on site or in laboratory may be realized in different situations:

- voltage and current circuits of the DUT are powered from power net in this case the TS23 is used as a reference standard in manual operation mode,
- voltage and current circuits of the DUT are powered from external source (like C300B calibrator or TS33 / TS41 automatic test system) in this case the TS23 is used as reference standard at load point forced by source,

with using following functions:

- calculating meter error (partial errors, average error, standard deviation) directly in [%] with method of settings time of measurement or number of pulses,
- measuring energy for verification of meter counters directly in [%],

,	U () (1-2340) () (2-1240) ()	19:54:39 2021-12:07 2030-2000	U @L1-228.0V @L2-248.0V @G12-228.0V P+ kWh V	(0,11-5,000A 01- (0,12-3,399A 02- (0,13-6,000A 92- 2 (0,13-6,000A 92- 2 (0,13-6,000A 92- 2 (0,13-6,000A 01- (0,12-1,13,00A 01- (0,12-1,13,00A 01- (0,12-1,13,00A 01- (0,12-1,13,00A 01- (0,12-1,13,00A 01- (0,12-1,13,00A 01- (0,12-1,13,00A 01- (0,12-1,13,00A 02- (0,12-1,13,00A 02- (Register	10:32-26 2021-12:40 1004/102-40
/ F	Ξ -0.039% EP 0.00000 Wh P 3.20940 kW	E1:	0.000000kWh 2.424600kWh	0.000000kvarh 0.845878kvarh	0.000000kWh 2.384900kWh	
	S 0.011% No Ei	. 🔁 🕹	2.424600kWh	0.845878kvarh	2.384900kWh	
		Eref:	2.424693kWh	0.845866kvarh	2.384945kWh	
-	-0.50% 0 +0.50% 3 -0.046	ع 🗖	-0.004%	0.001%	-0.002%	
	t 10 s 4 -0.024	⊧،+ ٤ تَـك	0.500%	0.500%	0.500%	
	Error test					∏ ⇒

- maximum power measuring for testing of maximum power meters.
- for different kind of measuring powers P, P+, P-, Q, Q+, Q-, S, as well as for the first harmonic of these powers PH1,PH1+, PH1,QH1, QH1+, QH1-,
- with visualization in form of table or trend chart.

In manual operation mode additionally may be used innovation functions:

- automatic identification of meter constant,
- √ automatic determining time of measurement or number of pulses.

Specifications for impulse input/output			
Parameter	Voltage range	Frequency range	Resolution
Impulse Input for counting pulses (two inputs)	02V/430V	0.0001Hz210kHz	0.001%@t≥1s
Impulse Output for Calmet TS23 testing	28V/100mA open collector	0.0001Hz210kHz	

Testing of instrument transformers - TT function (LV and MV current CT and potential PT simultaneously

- function of calculating transformer ratio error directly in [%],
- function of phase error calculation,
- function of transformer burden measurements,
- vector diagram of primary and secondary currents.

Primary and	l secondary curr	ent vector diagram
-------------	------------------	--------------------

Specifications for Burden measurement of PT and CT Transformers					
Parameter	Current range	Voltage range	Accuracy 1)2)		
CT Durdon	0.01.124 (Direct)	110V (Direct)	±0.2%		
CI Burden	0.0112A (Direct)	0.05 <u>1V</u> (Direct)	±0.2%*		
CT Burdon	0.1.1200 (Clamps CT1000C)	110V (Direct)	±0.4%		
CT Burden		0.05 <u>1V</u> (Direct)	±0.4%*		
	0.0112A (Direct)		±0.1%		
PT Burden	0.001 <u>0.01A</u> (Direct)	10600V (Direct)	±0.1%*		
	0.112A (Clamps CT100AC)		±0.2%		
Parameter	Primary current/voltage range	Secondary current/voltage range	Accuracy ¹⁾²⁾³⁾		
	0.2120A (Clamps CT100AC)	0.112A (Clamps CT100AC) ±0.4%			
CT Ratio		0.0112A (Direct)	±0.2%		
		0.001 <u>0.01A</u> (Direct)	±0.2%*		
CT Ratio	10, 12000 (Clamps CT10000C)		±0.2%(direct) /		
	101200A (Clamps CT1000AC)	0.112A (Clamps CT100AC) ±0.4%(
CT Ratio	0.3 <u>30A</u> /3 <u>300A</u> /30 <u>3000A (Flexible Clamps FCT3000AC.B)</u>	0.0112A (Direct)	±0.1%±Em		
CT Ratio	1 <u>2000A</u> (AmpLiteWire 2000A)		±0.1%±Em		
PT Ratio	0.5 <u>40kV</u> (VoltLiteWire 40kV)	10600V (Direct)	±0.1%±Em		

2) absolute extended uncertainty under confidence level of 95% covers reference uncertainty of standards, stability in 12 months, influence quantities (ambient temperature +20...+26°C, humidity and power supply voltage 85...265V, frequency 47...63Hz) 3)

Em – sensor basic error, Em=1%+0.1%* (Flexible Clamps FCT3000AC.B), Em=2%+0.2%* (AmpLiteWire/VoltLiteWire sensor

The TS23 – data management, PC Software, general parameters and accessories

Data Management. The operator can store all measurements and test results in a modern SD memory card up to 32GB, for later visualization in LCD and printing directly from the TS23 using a wireless printer without the need of an external PC and putting the SD card into it.

The data management software TS PC Soft provides the ability to transfer the data between TS23 and an external PC. All results can be summarized and printed in a test report by putting the SD card into an external PC or downloaded through USB, Bluetooth or Ethernet.

The TS PC Soft software additionally provides the ability to manage data on an external PC or tablet:

- downloading of measurement results from the TS23 to a PC through communication port,
- archiving of measurement results and combining individual results into one collective file,

- TS23 Data sheet EN 2022-01 5/5

- printing of measurement results in a test . reports,
- export of measurement results to Excel ٠ (directly to the XLSX file) and to the Windows clipboard.
- devices testina and performing measurements directly from a PC or tablet,
- sending files with results from the TS23 • to a PC,
- simultaneous testing of a device and performing additional activities in separate program windows:
 - ✓ measurement of network parameters,
 - registration of trends for all measured ✓ network parameters,

Weight and dimensions (width x height x depth)

Power supply Safety: Isolation protection and Measurement Category Dograp of protection

General parameters

- measurements of harmonics and histograms (bar chart),
- ✓ observation of oscilloscopes (waveform) and vector diagram,

Degree of protecti	UII		11 +0			
Operation / storage temperature		0+50°C / -20+60°C				
Operation / storage relative humidity		<90% @ +0+30°C and <75% @ +30+50°C / <95% @ 0+50°C				
6-	Imot TS22 Dofo	ronce Standard a	nd Association			
	lillet 1525 Kele	tence Stanuaru a	lu Accessories			
All completed Calmet 1523 Ref	erence Standard s	et consists of:				
Calmet 1523 Reference Standard C	lass 0.02 or 0.04,		1			
• power cord,		1		Sheat HET TS23		
 nuse 1500IIA 250V (2pcs), momony card SD 8CB 		1	CALMET TS23			
 FA36 set of safety measurement ca 	ables (12ncs)					
 C091A T3475-001 plug Amphenol 1 	for Reference pulse or	utnut				
 operation manual and warranty car 	operation manual and warranty card					
 input (PC13/250) / output (PC17/2 	50) pulse cables Amr	phenol \leftrightarrow BNC (2pcs),	desktop case	19" rack case		
 calibration certificate. 	• calibration certificate.					
Optionally for Calmet TS23 Tes	t System are avail	lable:				
Calmet TS PC Soft with operation		 CT10AC err 	or compensated			
manual and		clamps up	to 12A (3pcs),			
USB B / USB A interface cable,						
 TT function – Testing of CT and 		• CT100AC e	rror compensated			
PT	172 - C	clamps up	to 120A (3pcs),			
• EA30 120A test leads (6pcs) with		• CT1000AC	error compensated			
terminals set (18pcs),		clamps up	to 1200A (3pcs),			
EA20 additional accessories for		• FCT3000AC	B error compensated			
safety cables,		flexible clar	mps 30/300/3000A			
	· F · F · F · · · · · · · · · · · · · · · · · · ·	(3pcs),				
CF106H photo head with holder	e 📥 🚛 🖉	 ALW2000A 	C.1 primary current			
for inductive meter and meter	99 286 6 2010 8	sensor up to 2000A for LV and				
with LED,	ų	MV network	< (1pc),			

 DR200D miniature thermal VLW40kVC.1 primary voltage sensor up to 40kV (1pc), printer with Bluetooth, ER10H.3 1-position rack for ET31 transportation case for hanging of meter with quick additional accessories, connection device 3-phase, • ET35 transportation case for TS23,

*) all images are for illustrative purposes only and are subject to change

6.9kg and (448x178x256) mm – desktop case

(there is available also 19" case) 85...265V / 47...63Hz / <30VA IEC 61010-1 and 300V CAT III

TD_40

CALMET